Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
2.
Brain Res ; 1830: 148815, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387714

RESUMEN

Antipsychotic drugs (APDs) are the primary pharmacological treatment for schizophrenia, a complex disorder characterized by altered neuronal connectivity. Atypical or second-generation antipsychotics, such as Risperidone (RSP) and Clozapine (CZP) predominantly block dopaminergic D2 and serotonin receptor 2A (5-HT2A) neurotransmission. Both compounds also exhibit affinity for the 5-HT7R, with RSP acting as an antagonist and CZP as an inverse agonist. Our study aimed to determine whether RSP and CZP can influence neuronal morphology through a 5-HT7R-mediated mechanism. Here, we demonstrated that CZP promotes neurite outgrowth of early postnatal cortical neurons, and the 5-HT7R mediates its effect. Conversely, RSP leads to a reduction of neurite length of early postnatal cortical neurons, in a 5-HT7R-independent way. Furthermore, we found that the effects of CZP, mediated by 5-HT7R activation, require the participation of ERK and Cdk5 kinase pathways. At the same time, the modulation of neurite length by RSP does not involve these pathways. In conclusion, our findings provide valuable insights into the morphological changes induced by these two APDs in neurons and elucidate some of the associated molecular pathways. Investigating the 5-HT7R-dependent signaling pathways underlying the neuronal morphogenic effects of APDs may contribute to the identification of novel targets for the treatment of schizophrenia.


Asunto(s)
Antipsicóticos , Clozapina , Antipsicóticos/farmacología , Agonismo Inverso de Drogas , Neuronas/metabolismo , Receptores de Serotonina/metabolismo , Neuritas/metabolismo , Clozapina/farmacología , Receptor de Serotonina 5-HT2A/metabolismo
3.
Curr Med Chem ; 31(11): 1361-1403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37013427

RESUMEN

The purinergic P2X7 receptor (P2X7R), an ATP-gated non-selective cation channel, has emerged as a gatekeeper of inflammation that controls the release of proinflammatory cytokines. As a key player in initiating the inflammatory signaling cascade, the P2X7 receptor is currently under intense scrutiny as a target for the treatment of different pathologies, including chronic inflammatory disorders (rheumatoid arthritis and osteoarthritis), chronic neuropathic pain, mood disorders (depression and anxiety), neurodegenerative diseases, ischemia, cancer (leukemia), and many others. For these reasons, pharmaceutical companies have invested in discovering compounds able to modulate the P2X7R and filed many patent applications. This review article presents an account of P2X7R structure, function, and tissue distribution, emphasizing its role in inflammation. Next, we illustrate the different chemical classes of non-competitive P2X7R antagonists reported by highlighting their properties and qualities as clinical candidates for treating inflammatory disorders and neurodegenerative diseases. We also discuss the efforts to develop effective Positron Emission Tomography (PET) radioligands to progress the understanding of the pathomechanisms of neurodegenerative disorders, to provide evidence of drug-target engagement, and to assist clinical dose selection for novel drug therapies.


Asunto(s)
Neoplasias , Enfermedades Neurodegenerativas , Humanos , Antagonistas del Receptor Purinérgico P2X/farmacología , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Neoplasias/tratamiento farmacológico , Relación Estructura-Actividad , Inflamación/tratamiento farmacológico , Inflamación/patología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Receptores Purinérgicos P2X7/uso terapéutico
4.
Cells ; 12(21)2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37947648

RESUMEN

Microglial cells have been demonstrated to be significant resident immune cells that maintain homeostasis under physiological conditions. However, prolonged or excessive microglial activation leads to disturbances in the resolution of inflammation (RoI). Formyl peptide receptor 2 (FPR2) is a crucial player in the RoI, interacting with various ligands to induce distinct conformational changes and, consequently, diverse biological effects. Due to the poor pharmacokinetic properties of endogenous FPR2 ligands, the aim of our study was to evaluate the pro-resolving effects of a new ureidopropanamide agonist, compound AMS21, in hippocampal organotypic cultures (OHCs) stimulated with lipopolysaccharide (LPS). Moreover, to assess whether AMS21 exerts its action via FPR2 specifically located on microglial cells, we conducted a set of experiments in OHCs depleted of microglial cells using clodronate. We demonstrated that the protective and anti-inflammatory activity of AMS21 manifested as decreased levels of lactate dehydrogenase (LDH), nitric oxide (NO), and proinflammatory cytokines IL-1ß and IL-6 release evoked by LPS in OHCs. Moreover, in LPS-stimulated OHCs, AMS21 treatment downregulated NLRP3 inflammasome-related factors (CASP1, NLRP3, PYCARD) and this effect was mediated through FPR2 because it was blocked by the FPR2 antagonist WRW4 pre-treatment. Importantly this beneficial effect of AMS21 was only observed in the presence of microglial FPR2, and absent in OHCs depleted with microglial cells using clodronate. Our results strongly suggest that the compound AMS21 exerts, at nanomolar doses, protective and anti-inflammatory properties and an FPR2 receptor located specifically on microglial cells mediates the anti-inflammatory response of AMS21. Therefore, microglial FPR2 represents a promising target for the enhancement of RoI.


Asunto(s)
Inflamasomas , Microglía , Humanos , Inflamasomas/metabolismo , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Receptores de Formil Péptido/metabolismo , Lipopolisacáridos/farmacología , Ácido Clodrónico/farmacología , Ácido Clodrónico/uso terapéutico , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Hipocampo/metabolismo
5.
Eur J Med Chem ; 261: 115854, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37839346

RESUMEN

Formyl peptide receptor-1 (FPR1) is a G protein-coupled chemoattractant receptor that plays a crucial role in the trafficking of leukocytes into the sites of bacterial infection and inflammation. Recently, FPR1 was shown to be expressed in different types of tumor cells and could play a significant role in tumor growth and invasiveness. Starting from the previously reported FPR1 antagonist 4, we have designed a new series of 4H-chromen-2-one derivatives that exhibited a substantial increase in FPR1 antagonist potency. Docking studies identified the key interactions for antagonist activity. The most potent compounds in this series (24a and 25b) were selected to study the effects of the pharmacological blockade of FPR1 in NCl-N87 and AGS gastric cancer cells. Both compounds potently inhibited cell growth through a combined effect on cell proliferation and apoptosis and reduced cell migration, while inducing an increase in angiogenesis, thus suggesting that FPR1 could play a dual role as oncogene and onco-suppressor.


Asunto(s)
Isoflavonas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Receptores de Formil Péptido/metabolismo , Proliferación Celular
6.
ACS Chem Neurosci ; 14(20): 3869-3882, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37775304

RESUMEN

A substantial body of evidence demonstrates an association between a malfunction in the resolution of acute inflammation and the development of chronic inflammation. Recently, in this context, the importance of formyl peptide receptor 2 (FPR2) has been underlined. FPR2 activity is modulated by a wide range of endogenous ligands, including specialized pro-resolving mediators (SPMs) (e.g., LXA4 and AT-LXA4) and synthetic ligands. Since SPMs have unfavorable pharmacokinetic properties, we aimed to evaluate the protective and pro-resolving effects of a new potent FPR2 agonist, compound CMC23, in organotypic hippocampal cultures (OHCs) stimulated with lipopolysaccharide (LPS). The protective activity of CMC23 limited the lactate dehydrogenase release in LPS-stimulated cultures. This activity was mediated by the interaction with FPR2 as pretreatment with the FPR2 selective antagonist WRW4 abolished CMC23-induced protection. Furthermore, decreased levels of pro-inflammatory IL-1ß and IL-6 were observed after CMC23 administration in LPS-treated OHCs. CMC23 also diminished the LPS-induced increase in IL-17A and both IL-23 subunits p19 and p40 in OHCs. Finally, we demonstrated that CMC23 exerts its beneficial impact via the STAT3/SOCS3 signaling pathway since it attenuated the level of phospho-STAT3 and maintained the LPS-induced SOCS3 levels in OHCs. Collectively, our research implies that the new FPR2 agonist CMC23 has beneficial protective and anti-inflammatory properties in nanomolar doses and FPR2 represents a promising target for the enhancement of inflammation resolution.


Asunto(s)
Enfermedades Neuroinflamatorias , Receptores de Formil Péptido , Humanos , Endotoxinas , Hipocampo/metabolismo , Lipopolisacáridos/toxicidad , Receptores de Formil Péptido/agonistas , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/tratamiento farmacológico
8.
Sci Rep ; 13(1): 12798, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550340

RESUMEN

The development of effective drugs to treat coronavirus infections remains a significant challenge for the scientific community. Recent evidence reports on the sigma-1 receptor (S1R) as a key druggable host protein in the SARS-CoV-1 and SARS-CoV-2 interactomes and shows a potent antiviral activity against SARS-CoV-2 for the S1R antagonist PB28. To improve PB28 activity, we designed and tested a series of its analogues and identified a compound that is fourfold more potent against SARS-CoV-2 than PB28 itself. Interestingly, we found no direct correlation between S1R affinity and SARS-CoV-2 antiviral activity. Building on this, we employed comparative induced fit docking and molecular dynamics simulations to gain insights into the possible mechanism that occurs when specific ligand-protein interactions take place and that may be responsible for the observed antiviral activity. Our findings offer a possible explanation for the experimental observations, provide insights into the S1R conformational changes upon ligand binding and lay the foundation for the rational design of new S1R ligands with potent antiviral activity against SARS-CoV-2 and likely other viruses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Antivirales/química , Ligandos , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular
9.
Front Neurosci ; 17: 1087788, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065917

RESUMEN

Introduction: Autism spectrum disorder (ASD) is a persistent neurodevelopmental condition characterized by two core behavioral symptoms: impaired social communication and interaction, as well as stereotypic, repetitive behavior. No distinct cause of ASD is known so far; however, excitatory/inhibitory imbalance and a disturbed serotoninergic transmission have been identified as prominent candidates responsible for ASD etiology. Methods: The GABA B receptor agonist R-Baclofen and the selective agonist for the 5HT7 serotonin receptor LP-211 have been reported to correct social deficits and repetitive behaviors in mouse models of ASD. To evaluate the efficacy of these compounds in more details, we treated BTBR T+ Itpr3 tf /J and B6.129P2-Fmr1 tm1Cgr /J mice acutely with R-Baclofen or LP-211 and evaluated the behavior of animals in a series of tests. Results: BTBR mice showed motor deficits, elevated anxiety, and highly repetitive behavior of self-grooming. Fmr1-KO mice exhibited decreased anxiety and hyperactivity. Additionally, Fmr1-KO mice's ultrasonic vocalizations were impaired suggesting a reduced social interest and communication of this strain. Acute LP-211 administration did not affect the behavioral abnormalities observed in BTBR mice but improved repetitive behavior in Fmr1-KO mice and showed a trend to change anxiety of this strain. Acute R-Baclofen treatment improved repetitive behavior only in Fmr1-KO mice. Conclusion: Our results add value to the current available data on these mouse models and the respective compounds. Yet, additional studies are needed to further test R-Baclofen and LP-211 as potential treatments for ASD therapy.

11.
ACS Omega ; 7(29): 25239-25243, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35910137

RESUMEN

Many anticancer drugs are reported to have low physicochemical stability after dilution; therefore, producers impose short times from reconstitution, dilution, and the end of administration. The precariousness of cancer patients' health in real-life experience within cancer hospitals often forces delays in the drug administration with respect to the standard treatment schedule timing, because of acute toxicities or the need to postpone a control analysis before administration. The public health costs for discarded anticancer drugs due to administration interruptions can be avoided, thanks to independent analytical studies, which integrate the producer's data reported in the technical sheet, referring to the real conditions of preparation in a sterile atmosphere under a cabin in a laboratory dedicated to handling cytotoxic drugs in controlled conditions of temperature, pressure, and particulate contamination. Decitabine is apparently an unstable molecule, whose reported stability is only 3 h at 2-8 °C when diluted, while the mother solution must be immediately used or, otherwise, discarded. This study has investigated the physicochemical stability of decitabine both in diluted infusion bags and in sterile water reconstituted syringes at 4 °C for 0, 24, 48, and 72 h. In all performed studies, the stability-indicating method involves, for the first time, the use of liquid chromatography-tandem mass spectrometry analysis. Unexpectedly, both diluted and reconstituted solutions of decitabine are more stable than previously reported data, with a 48 h-long physicochemical stability at 2-8 °C and protected from light.

12.
Front Mol Neurosci ; 15: 946159, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875663

RESUMEN

Serotonergic receptors of the 5-HT7 type (5-HT7Rs) are widely expressed in the central nervous system (CNS), where they modulate several functions, such as pain. Behavioral experiments in vivo have shown both anti- and pro-nociceptive actions of 5-HT7Rs, although an analgesic effect seems to be prevalent. In the spinal cord dorsal horn, the mechanisms involved in 5-HT7R-mediated synaptic modulation are still poorly understood, especially those regarding the control of synaptic inhibition. The present study investigated the modulation exerted by 5-HT7Rs on dorsal horn excitatory and inhibitory synaptic circuits, by performing patch-clamp recordings from lamina II neurons in mouse spinal cord slices. Our results show that applying the selective 5-HT7 agonist LP-211 facilitates glutamatergic release by enhancing the frequency of spontaneous postsynaptic currents (sEPSCs) and increasing the peak amplitude of excitatory postsynaptic currents (EPSCs) evoked by dorsal root stimulation. The effects on sEPSCs were still observed in the presence of the 5-HT1A antagonist WAY-100635, while the 5-HT7 antagonist SB-269970 blocked them. LP-211 was also able to increase the release of gamma-aminobutyric acid (GABA) and glycine, as shown by the increase of spontaneous inhibitory currents (sIPSC) frequency and evoked inhibitory postsynaptic currents (IPSC) amplitude. LP-211 was proved to be more effective in potentiating synaptic inhibition as compared to excitation: consistently, 5-HT7R activation significantly enhanced the excitability of tonic firing neurons, mainly corresponding to inhibitory interneurons. Our data bring new insights into the mechanisms of synaptic modulation mediated by 5-HT7Rs in the dorsal horn. Stronger impact on synaptic inhibition supports the hypothesis that these receptors may play an anti-nociceptive role in the spinal cord of naïve animals.

13.
ChemMedChem ; 17(10): e202100759, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35286016

RESUMEN

Mounting evidence suggests that the serotonin system serves in signal transmission to regulate insulin secretion in pancreatic islets of Langerhans. Among the 5-HT receptor subtype found in pancreatic islets, serotonin receptor 1A (5-HT1A ) demonstrates a unique ability to inhibit ß-cell insulin secretion. We report the design, synthesis, and characterization of two novel fluorescent probes for the 5-HT1A receptor. The compounds were prepared by conjugating the scaffold of the 5-HT1A receptor agonist 8-OH-DPAT with two fluorophores suitable for live-cell imaging. Compound 5a {5-(dimethylamino)-N-[5-[(8-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)(propyl)amino]pentyl]naphtalen-1-sulfonammide} showed high affinity for the 5-HT1A receptor (Ki =1.8 nM). Fluoroprobe 5a was able to label the 5-HT1A receptor in pancreatic islet cell cultures in a selective manner, as the fluorescence emission was significantly attenuated by co-administration of the 5-HT1A receptor antagonist WAY-100635. Thus, fluoroprobe 5a showed useful properties to further characterize this unique receptor's role.


Asunto(s)
Islotes Pancreáticos , Receptor de Serotonina 5-HT1A , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Humanos , Agonistas de Receptores de Serotonina/farmacología
14.
J Med Chem ; 65(6): 5004-5028, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35257581

RESUMEN

Formyl peptide receptor 2 (FPR2) agonists can boost the resolution of inflammation and can offer alternative approaches for the treatment of pathologies with underlying chronic neuroinflammation, including neurodegenerative disorders. Starting from the FPR2 agonist 2 previously identified in our laboratory and through fine-tuning of FPR2 potency and metabolic stability, we have identified a new series of ureidopropanamide derivatives endowed with a balanced combination of such properties. Computational studies provided insights into the key interactions of the new compounds for FPR2 activation. In mouse microglial N9 cells and in rat primary microglial cells stimulated with lipopolysaccharide, selected compounds inhibited the production of pro-inflammatory cytokines, counterbalanced the changes in mitochondrial function, and inhibited caspase-3 activity. Among the new agonists, (S)-11l stands out also for the ability to permeate the blood-brain barrier and to accumulate in the mouse brain in vivo, thus representing a valuable pharmacological tool for studies in vivo.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Receptores de Formil Péptido , Animales , Enfermedades del Sistema Nervioso Central/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Ratones , Microglía/metabolismo , Ratas , Receptores de Formil Péptido/agonistas , Receptores de Lipoxina/metabolismo
15.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35215274

RESUMEN

Autism spectrum disorders (ASD) are a group of heterogeneous neurodevelopmental conditions characterized by social deficits, repetitive stereotyped behaviors, and altered inflammatory responses. Accordingly, children with ASD show decreased plasma levels of lipoxin A4 (LXA4), a mediator involved in the resolution of inflammation, which is the endogenous ligand of the formyl peptide receptor 2 (FPR2). To investigate the role of FPR2 in ASDs, we have used a new ureidopropanamide derivative able to activate the receptor, named MR-39. The effects of MR-39 (10 mg/kg, for 8 days) on hippocampal pro-inflammatory profile, neuronal plasticity, and social behavior were evaluated in two validated animal models of ASD: BTBR mouse strain and mice prenatally exposed to valproic acid (VPA). Primary cultures of hippocampal neurons from BTBR mice were also used to evaluate the effect of MR-39 on neurite elongation. Our results show that MR-39 treatment reduced several inflammatory markers, restored the low expression of LXA4, and modulated FPR2 expression in hippocampal tissues of both ASD animal models. These findings were accompanied by a significant positive effect of MR-39 on social behavioral tests of ASD mice. Finally, MR-39 stimulates neurite elongation in isolated hippocampal neurons of BTBR mice. In conclusion, these data indicate FPR2 as a potential target for an innovative therapeutical approach for the cure of ASD.

16.
Molecules ; 27(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35209087

RESUMEN

Long-chain arylpiperazine scaffold is a versatile template to design central nervous system (CNS) drugs that target serotonin and dopamine receptors. Here we describe the synthesis and biological evaluation of ten new arylpiperazine derivatives designed to obtain an affinity profile at serotonin 5-HT1A, 5-HT2A, 5-HT7 receptor, and dopamine D2 receptor of prospective drugs to treat the core symptoms of autism spectrum disorder (ASD) or psychosis. Besides the structural features required for affinity at the target receptors, the new compounds incorporated structural fragments with antioxidant properties to counteract oxidative stress connected with ASD and psychosis. All the new compounds showed CNS MultiParameter Optimization score predictive of desirable ADMET properties and cross the blood-brain barrier. We identified compound 12a that combines an affinity profile compatible with antipsychotic activity (5-HT1AKi = 41.5 nM, 5-HT2AKi = 315 nM, 5-HT7Ki = 42.5 nM, D2Ki = 300 nM), and compound 9b that has an affinity profile consistent with studies in the context of ASD (5-HT1AKi = 23.9 nM, 5-HT2AKi = 39.4 nM, 5-HT7Ki = 45.0 nM). Both compounds also had antioxidant properties. All compounds showed low in vitro metabolic stability, the only exception being compound 9b, which might be suitable for studies in vivo.


Asunto(s)
Técnicas de Química Sintética , Diseño de Fármacos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Antagonistas de los Receptores de Dopamina D2 , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Receptores Dopaminérgicos/química , Receptores Dopaminérgicos/metabolismo , Receptores de Serotonina/química , Receptores de Serotonina/metabolismo , Relación Estructura-Actividad
17.
ACS Chem Neurosci ; 13(4): 497-509, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35099177

RESUMEN

During the last decade, the kinetics of drug-target interaction has received increasing attention as an important pharmacological parameter in the drug development process. Several studies have suggested that the lipophilicity of a molecule can play an important role. To date, this aspect has been studied for several G protein-coupled receptors (GPCRs) ligands but not for the 5-HT7 receptor (5-HT7R), a GPCR proposed as a valid therapeutic target in neurodevelopmental and neuropsychiatric disorders associated with abnormal neuronal connectivity. In this study, we report on structure-kinetics relationships of a set of arylpiperazine-based 5-HT7R ligands. We found that it is not the overall lipophilicity of the molecule that influences drug-target interaction kinetics but rather the position of polar groups within the molecule. Next, we performed a combination of molecular docking studies and molecular dynamics simulations to gain insights into structure-kinetics relationships. These studies did not suggest specific contact patterns between the ligands and the receptor-binding site as determinants for compounds kinetics. Finally, we compared the abilities of two 5-HT7R agonists with similar receptor-binding affinities and different residence times to stimulate the 5-HT7R-mediated neurite outgrowth in mouse neuronal primary cultures and found that the compounds induced the effect with different timing. This study provides the first insights into the binding kinetics of arylpiperazine-based 5-HT7R ligands that can be helpful to design new 5-HT7R ligands with fine-tuning of the kinetic profile.


Asunto(s)
Receptores de Serotonina , Serotonina , Animales , Cinética , Ligandos , Ratones , Simulación del Acoplamiento Molecular , Receptores de Serotonina/metabolismo , Relación Estructura-Actividad
18.
ACS Chem Neurosci ; 13(2): 185-186, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34989567

RESUMEN

The molecular characterization of bioactive molecules, for example, small molecules targeting G-protein-coupled receptors, is evolving in complexity, impacting the meaning of terms like "agonist", "antagonist", and "selective", which, in the absence of detailed definitions and scientific consensus, can be sources of confusion in the literature. We discuss this issue and offer straightforward solutions to it.


Asunto(s)
Receptores Acoplados a Proteínas G , Ligandos
19.
Cells ; 10(9)2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34572022

RESUMEN

Prolonged or excessive microglial activation may lead to disturbances in the resolution of inflammation (RoI). The importance of specialized pro-resolving lipid mediators (SPMs) in RoI has been highlighted. Among them, lipoxins (LXA4) and aspirin-triggered lipoxin A4 (AT-LXA4) mediate beneficial responses through the activation of N-formyl peptide receptor-2 (FPR2). We aimed to shed more light on the time-dependent protective and anti-inflammatory impact of the endogenous SPMs, LXA4, and AT-LXA4, and of a new synthetic FPR2 agonist MR-39, in lipopolysaccharide (LPS)-exposed rat microglial cells. Our results showed that LXA4, AT-LXA4, and MR-39 exhibit a protective and pro-resolving potential in LPS-stimulated microglia, even if marked differences were apparent regarding the time dependency and efficacy of inhibiting particular biomarkers. The LXA4 action was found mainly after 3 h of LPS stimulation, and the AT-LXA4 effect was varied in time, while MR-39's effect was mainly observed after 24 h of stimulation by endotoxin. MR-39 was the only FPR2 ligand that attenuated LPS-evoked changes in the mitochondrial membrane potential and diminished the ROS and NO release. Moreover, the LPS-induced alterations in the microglial phenotype were modulated by LXA4, AT-LXA4, and MR-39. The anti-inflammatory effect of MR-39 on the IL-1ß release was mediated through FPR2. All tested ligands inhibited TNF-α production, while AT-LXA4 and MR-39 also diminished IL-6 levels in LPS-stimulated microglia. The favorable action of LXA4 and MR-39 was mediated through the inhibition of ERK1/2 phosphorylation. AT-LXA4 and MR39 diminished the phosphorylation of the transcription factor NF-κB, while AT-LXA4 also affected p38 kinase phosphorylation. Our results suggest that new pro-resolving synthetic mediators can represent an attractive treatment option for the enhancement of RoI, and that FPR2 can provide a perspective as a target in immune-related brain disorders.


Asunto(s)
Antiinflamatorios/farmacología , Lipopolisacáridos/farmacología , Microglía/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Receptores de Lipoxina/agonistas , Transducción de Señal/efectos de los fármacos , Animales , Células Cultivadas , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microglía/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
20.
Mol Neurobiol ; 58(12): 6203-6221, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34468933

RESUMEN

The major histopathological hallmarks of Alzheimer's disease (AD) include ß-amyloid (Aß) plaques, neurofibrillary tangles, and neuronal loss. Aß 1-42 (Aß1-42) has been shown to induce neurotoxicity and secretion of proinflammatory mediators that potentiate neurotoxicity. Proinflammatory and neurotoxic activities of Aß1-42 were shown to be mediated by interactions with several cell surface receptors, including the chemotactic G protein-coupled N-formyl peptide receptor 2 (FPR2). The present study investigated the impact of a new FPR2 agonist, MR-39, on the neuroinflammatory response in ex vivo and in vivo models of AD. To address this question, organotypic hippocampal cultures from wild-type (WT) and FPR2-deficient mice (knockout, KO, FPR2-/-) were treated with fibrillary Aß1-42, and the effect of the new FPR2 agonist MR-39 on the release of pro- and anti-inflammatory cytokines was assessed. Similarly, APP/PS1 double-transgenic AD mice were treated for 20 weeks with MR-39, and immunohistological staining was performed to assess neuronal loss, gliosis, and Aß load in the hippocampus and cortex. The data indicated that MR-39 was able to reduce the Aß1-42-induced release of proinflammatory cytokines and to improve the release of anti-inflammatory cytokines in mouse hippocampal organotypic cultures. The observed effect was apparently related to the inhibition of the MyD88/TRAF6/NFкB signaling pathway and a decrease in NLRP3 inflammasome activation. Administration of MR-39 to APP/PS1 mice improved neuronal survival and decreased microglial cell density and plaque load.These results suggest that FPR2 may be a promising target for alleviating the inflammatory process associated with AD and that MR-39 may be a useful therapeutic agent for AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/farmacología , Antiinflamatorios/uso terapéutico , Hipocampo/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Fragmentos de Péptidos/farmacología , Receptores de Formil Péptido/agonistas , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones , Ratones Transgénicos , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA